Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 11(1): 18126, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1406407

RESUMO

COVID-19 has emerged as global pandemic with largest damage to the public health, economy and human psyche.The genome sequence data obtained during the ongoing pandemic are valuable to understand the virus evolutionary patterns and spread across the globe. Increased availability of genome information of circulating SARS-CoV-2 strains in India will enable the scientific community to understand the emergence of new variants and their impact on human health. The first case of COVID-19 was detected in Chambal region of Madhya Pradesh state in mid of March 2020 followed by multiple introduction events and expansion of cases within next three months. More than 5000 COVID-19 suspected samples referred to Defence Research and Development Establishment, Gwalior, Madhya Pradesh were analyzed during the nation -wide lockdown and unlock period. A total of 136 cases were found positive over a span of three months that included virus introduction to the region and its further spread. Whole genome sequences employing Oxford nanopore technology were generated for 26 SARS-CoV-2 circulating in 10 different districts in Madhya Pradesh state of India. This period witnessed index cases with multiple travel histories responsible for introduction of COVID-19 followed by remarkable expansion of virus. The genome wide substitutions including in important viral proteins were identified. The detailed phylogenetic analysis revealed the circulating SARS-CoV-2 clustered in multiple clades including A2a, A4 and B. The cluster-wise segregation was observed, suggesting multiple introduction links and subsequent evolution of virus in the region. This is the first comprehensive whole genome sequence analysis from central India, which revealed the emergence and evolution of SARS-CoV-2 during thenation-wide lockdown and unlock.


Assuntos
COVID-19/diagnóstico , Mutação de Sentido Incorreto , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , COVID-19/virologia , Evolução Molecular , Genoma Viral/genética , Índia , Reação em Cadeia da Polimerase Multiplex/métodos , Pandemias/prevenção & controle , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Sequenciamento Completo do Genoma/métodos
2.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-805496.v1

RESUMO

Background: With the start of the Coronavirus disease19 (COVID19) pandemic, the Coronavirus has mutated constantly. Recently a new variant called Delta plus has been reported in few countries, including South Africa, Brazil and India. The Delta plus variant contains an additional mutation called K417N on the coronavirus spike. The present study aims to determine the virulence and transmissibility of the Delta plus variant and to check the efficiency of different antibodies on its neutralization. Materials: and Methods Different computational tools such as PROVEAN, an online tool, HOPE server, simulation using CABS Flex, Clus pro, an online docking tool, were used to predict the structure and function of Delta plus variant by performing a comparative study with wild type protein. Also, to find an effective antibody against Delta plus variant, antigen-antibody docking studies were conducted through Clus pro server. Furthermore, we performed a 2D interaction diagram analysis to find the amino acid residue's interaction against antibodies. Results: PROVEAN and HOPE showed the mutation (K417N) in the S-glycoprotein of Delta plus as NEUTRAL mutation. This mutation causes the loss of cysteine bonds leading to the destabilization of the 3D structure of spike protein. Furthermore, the RMSF plot emphasizing the 17 th amino acid position of wild and Delta plus mutant revealed the high fluctuation of mutant protein structure compared to the wild protein structure. Further, a comparative docking study against hACE2 shows higher binding energy of wild-type RBD (-751.7 kcal/mol) than mutant RBD (-750.1 kcal/mol). Moreover, antigen-antibody docking study revealed higher affinity of BD-23 Fab antibodies with greater interaction energy ( -997 kcal/mol) compared to other antibodies and thus may prove to be a promising therapeutic against Delta plus variant. Conclusion: Delta plus variant is less stable, has a lower binding affinity to hACE2 and has less virulence than wild type. However, the BD-23 Fab antibody has shown a more significant association for this variant and can be used in its treatment.


Assuntos
Infecções por Coronavirus , COVID-19
3.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-702450.v1

RESUMO

Background: A global outbreak of coronavirus disease 19 (COVID-19) led researchers to investigate various active compounds that can inhibit the replication of SARS-CoV2 (severe acute respiratory syndrome coronavirus 2). The present work targets to evaluate small covalent synthetic molecules through a virtual screening and docking approach that can efficiently inhibit Spike Glycoprotein of SARS CoV2. Methods: We retrieved around 50,000 small covalent synthetic molecules through the American chemical society (CAS) database. The initial evaluation of these synthetic molecules depends on the ADMET screening. A Lipinski's Rule of Five (RO5) was also applied to find whether the drug met the criteria of good bioavailability. Then, the further selection was made through virtual screening using BIOVIA Discovery Studio. Further, comparison among top hits was performed via a docking approach based on the binding energy (kcal/mol) calculated using the AutoDock Vina plugin and Patch Dock-like docking engines. Finally, the selected top five molecules were compared for their binding efficiency with reference drugs like Favipiravir, Chloroquine, Ribavirin, Hydroxychloroquine (approved by the FDA), and molecules with better binding affinity than reference drugs was selected. Results: In the first tier of selection, 215 molecules were screened out, satisfying all the necessary conditions of RO5 and ADMET. Among 215 molecules screened, only 203 molecules were stable in structure to undergo the second tier of target-based virtual screening. Further, based upon the LibDock score generated by virtual screening, the top five molecules with the highest LibD score were selected. Molecular docking of these five selected compounds reveals compound2 (3-ethyl-5-propyladamantan-1-amine) with the best binding energy. Furthermore, we compared the binding affinity of 3-ethyl-5-propyladamantan-1-amine with reported drugs that show 3-ethyl-5-propyladamantan-1-amine as the most promising ligand efficient hydrogen bond interactions with amino acid residues of protein which provides more excellent stability in the docked region of the protein with efficient binding energy as compared to the reference molecule. Moreover, Compound2 also has a high oral bioavailability, non-mutagenicity, non-toxicity and follows all RO5 criteria. Conclusion: Thus, it has potential as an antiviral covalent synthetic molecule that may prevent the replication of spike protein. These findings are just preliminary selection to facilitate the upcoming tests from in vivo and in vitro studies.


Assuntos
Infecções por Coronavirus , Queimaduras Químicas , COVID-19
4.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.14.296491

RESUMO

In this work, we evaluated the levels of genetic diversity in 38 complete Genomes of SARS-CoV-2 from six countries in South America, using specific methodologies for paired FST, AMOVA, mismatch, demographic and spatial expansions, molecular diversity and for the time of evolutionary divergence. The analyses showed non-significant evolutionary divergences within and between the six countries, as well as a significant similarity to the time of genetic evolutionary divergence between all populations. Thus, it seems safe to affirm that we will find similar results for the other Countries of South America, reducing speculation about the existence of rapid and silent mutations that, although there are as we have shown in this work, do not increase, until this moment, the genetic variability of the Virus, a fact that would hinder the work with molecular targets for vaccines and drugs in general.

5.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.15.298604

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the COVID-19 pandemic; a pandemic of a scale that has not been seen in the modern era. Despite over 29 million reported cases and over 900,000 deaths worldwide as of September 2020, herd immunity and widespread vaccination efforts by many experts are expected to be insufficient in addressing this crisis for the foreseeable future. Thus, there is an urgent need for treatments that can lessen the effects of SARS-CoV-2 in patients who become seriously affected. Many viruses including HIV, the common cold, SARS-CoV and SARS-CoV-2 use a unique mechanism known as -1 programmed ribosomal frameshifting (-1 PRF) to successfully replicate and infect cells in the human host. SARS-CoV (the coronavirus responsible for SARS) and SARS-CoV-2 possess a unique RNA structure, a three-stemmed pseudoknot, that stimulates -1 PRF. Recent experiments identified that small molecules can be introduced as antiviral agents to bind with the pseudoknot and disrupt its stimulation of -1 PRF. If successfully developed, small molecule therapy that targets -1 PRF in SARS-CoV-2 is an excellent strategy to improve patients' prognoses. Crucial to developing these successful therapies is modeling the structure of the SARS-CoV-2 -1 PRF pseudoknot. Following a structural alignment approach, we identify similarities in the -1 PRF pseudoknots of the novel coronavirus SARS-CoV-2, the original SARS-CoV, as well as a third coronavirus: MERS-CoV, the coronavirus responsible for Middle East Respiratory Syndrome (MERS). In addition, we provide a better understanding of the SARS-CoV-2 -1 PRF pseudoknot by comprehensively investigating the structural landscape using a hierarchical folding approach. Since understanding the impact of mutations is vital to long-term success of treatments that are based on predicted RNA functional structures, we provide insight on SARS-CoV-2 -1 PRF pseudoknot sequence mutations and their effect on the resulting structure and its function.


Assuntos
Infecções por Coronavirus , Infecções por HIV , Síndrome Respiratória Aguda Grave , Doença de Addison , COVID-19
6.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.15.297846

RESUMO

COVID 19 has emerged as global pandemic with largest damage to the economy and human psyche. The genomic signature deciphered during the ongoing pandemic period is valuable to understand the virus evolutionary patterns and spread across the globe. Increased availability of genome information of circulating strain in our country will enable to generate selective details in virulent and non virulent markers to prophylaxis and therapeutic interventions. The first case of SARS CoV-2 was detected in Chambal region of Madhya Pradesh state in mid of March 2020 followed by multiple introduction events and expansion of COVID-19 cases within 3 months in this region. We analyzed around 5000 COVID-19 suspected samples referred to Defence Research and Development Establishment, Gwalior, Madhya Pradesh. A total of 136 cases were found positive over a span of three months period this includes virus introduction to region and further spread. Whole genome sequences employing Oxford nanopore technology were deciphered for 26 SARS-CoV-2 circulating in 10 different districts in Madhya Pradesh State of India. The region witnessed index cases with multiple travel history responsible for introduction of COVID-19 followed by remarkable expansion of virus. The genome wide substitutions including in important viral proteins were observed. The detailed phylogenetic analysis revealed the circulating SARS-CoV-2 clustered in multiple clades A2a, A4 and B. The cluster wise segregation was observed suggesting multiple introduction links and evolution of virus in the region. This is the first comprehensive details of whole genome sequence analysis from central India region, which will add genome wide knowledge towards diagnostic and therapeutic interventions.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA